22 research outputs found

    Molecular Detectability in Exoplanetary Emission Spectra

    Get PDF
    Of the many recently discovered worlds orbiting distant stars, very little is yet known of their chemical composition. With the arrival of new transit spectroscopy and direct imaging facilities, the question of molecular detectability as a function of signal-to-noise (SNR), spectral resolving power and type of planets has become critical. In this paper, we study the detectability of key molecules in the atmospheres of a range of planet types, and report on the minimum detectable abundances at fixed spectral resolving power and SNR. The planet types considered - hot Jupiters, hot super-Earths, warm Neptunes, temperate Jupiters and temperate super-Earths - cover most of the exoplanets characterisable today or in the near future. We focus on key atmospheric molecules, such as CH4, CO, CO2, NH3, H2O, C2H2, C2H6, HCN, H2S and PH3. We use two methods to assess the detectability of these molecules: a simple measurement of the deviation of the signal from the continuum, and an estimate of the level of confidence of a detection through the use of the likelihood ratio test over the whole spectrum (from 1 to 16μm\mu m). We find that for most planetary cases, SNR=5 at resolution R=300 (λ<5μm\lambda < 5\mu m) and R=30 (λ>5μm\lambda > 5\mu m) is enough to detect the very strongest spectral features for the most abundant molecules, whereas an SNR comprised between 10 and 20 can reveal most molecules with abundances 10^-6 or lower, often at multiple wavelengths. We test the robustness of our results by exploring sensitivity to parameters such as vertical thermal profile, mean molecular weight of the atmosphere and relative water abundances. We find that our main conclusions remain valid except for the most extreme cases. Our analysis shows that the detectability of key molecules in the atmospheres of a variety of exoplanet cases is within realistic reach, even with low SNR and spectral resolving power.Comment: ICARUS Accepte

    The atmospheric chemistry of the warm Neptune GJ 3470b: influence of metallicity and temperature on the CH4/CO ratio

    Full text link
    Current observation techniques are able to probe the atmosphere of some giant exoplanets and get some clues about their atmospheric composition. However, the chemical compositions derived from observations are not fully understood, as for instance in the case of the CH4/CO abundance ratio, which is often inferred different from what has been predicted by chemical models. Recently, the warm Neptune GJ3470b has been discovered and because of its close distance from us and high transit depth, it is a very promising candidate for follow up characterisation of its atmosphere. We study the atmospheric composition of GJ3470b in order to compare with the current observations of this planet, to prepare the future ones, but also as a typical case study to understand the chemical composition of warm (sub-)Neptunes. The metallicity of such atmospheres is totally uncertain, and vary probably to values up to 100x solar. We explore the space of unknown parameters to predict the range of possible atmospheric compositions. Within the parameter space explored we find that in most cases methane is the major carbon-bearing species. We however find that in some cases, typically for high metallicities with a sufficiently high temperature the CH4/CO abundance ratio can become lower than unity, as suggested by some multiwavelength photometric observations of other warm (sub-)Neptunes, such as GJ1214b and GJ436b. As for the emission spectrum of GJ3470b, brightness temperatures at infrared wavelengths may vary between 400 and 800K depending on the thermal profile and metallicity. Combined with a hot temperature profile, a substantial enrichment in heavy elements by a factor of 100 with respect to the solar composition can shift the carbon balance in favour of carbon monoxide at the expense of CH4. Nevertheless, current observations of this planet do not allow yet to determine which model is more accurate.Comment: 12 pages, 8 figures, accepted in Astronomy & Astrophysic

    Remote-sensing Characterisation of Major Solar System Bodies with the Twinkle Space Telescope

    Full text link
    Remote-sensing observations of Solar System objects with a space telescope offer a key method of understanding celestial bodies and contributing to planetary formation and evolution theories. The capabilities of Twinkle, a space telescope in a low Earth orbit with a 0.45m mirror, to acquire spectroscopic data of Solar System targets in the visible and infrared are assessed. Twinkle is a general observatory that provides on demand observations of a wide variety of targets within wavelength ranges that are currently not accessible using other space telescopes or that are accessible only to oversubscribed observatories in the short-term future. We determine the periods for which numerous Solar System objects could be observed and find that Solar System objects are regularly observable. The photon flux of major bodies is determined for comparison to the sensitivity and saturation limits of Twinkle's instrumentation and we find that the satellite's capability varies across the three spectral bands (0.4-1, 1.3-2.42, and 2.42-4.5{\mu}m). We find that for a number of targets, including the outer planets, their large moons, and bright asteroids, the model created predicts that with short exposure times, high-resolution spectra (R~250, {\lambda} 2.42{\mu}m) could be obtained with signal-to-noise ratio (SNR) of >100 with exposure times of <300s

    Small Bodies Science with Twinkle

    Get PDF
    Twinkle is an upcoming 0.45m space-based telescope equipped with a visible and two near-infrared spectrometers covering the spectral range 0.4 to 4.5{\mu}m with a resolving power R~250 ({\lambda}<2.42{\mu}m) and R~60 ({\lambda}>2.42{\mu}m). We explore Twinkle's capabilities for small bodies science and find that, given Twinkle's sensitivity, pointing stability, and spectral range, the mission can observe a large number of small bodies. The sensitivity of Twinkle is calculated and compared to the flux from an object of a given visible magnitude. The number, and brightness, of asteroids and comets that enter Twinkle's field of regard is studied over three time periods of up to a decade. We find that, over a decade, several thousand asteroids enter Twinkle's field of regard with a brightness and non-sidereal rate that will allow Twinkle to characterise them at the instrumentation's native resolution with SNR > 100. Hundreds of comets can also be observed. Therefore, Twinkle offers researchers the opportunity to contribute significantly to the field of Solar System small bodies research.Comment: Published in JATI

    Generation of an optimal target list for the Exoplanet Characterisation Observatory (EChO)

    Get PDF
    The Exoplanet Characterisation Observatory (EChO) has been studied as a space mission concept by the European Space Agency in the context of the M3 selection process. Through direct measurement of the atmospheric chemical composition of hundreds of exoplanets, EChO would address fundamental questions such as: What are exoplanets made of? How do planets form and evolve? What is the origin of exoplanet diversity? More specifically, EChO is a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planetary sample within its four to six year mission lifetime. In this paper we use the end-to-end instrument simulator EChOSim to model the currently discovered targets, to gauge which targets are observable and assess the EChO performances obtainable for each observing tier and time. We show that EChO would be capable of observing over 170 relativity diverse planets if it were launched today, and the wealth of optimal targets for EChO expected to be discovered in the next 10 years by space and ground-based facilities is simply overwhelming. In addition, we build on previous molecular detectability studies to show what molecules and abundances will be detectable by EChO for a selection of real targets with various molecular compositions and abundances. EChO's unique contribution to exoplanetary science will be in identifying the main constituents of hundreds of exoplanets in various mass/temperature regimes, meaning that we will be looking no longer at individual cases but at populations. Such a universal view is critical if we truly want to understand the processes of planet formation and evolution in various environments. In this paper we present a selection of key results. The full results are available online (http://www.ucl.ac.uk/exoplanets/echotargetlist/).Comment: Accepted for publication in Experimental Astronomy, 20 pages, 10 figures, 3 table

    Exoplanet spectroscopy and photometry with the Twinkle space telescope

    Get PDF
    The Twinkle space telescope has been designed for the characterisation of exoplanets and Solar System objects. Operating in a low Earth, Sun-synchronous orbit, Twinkle is equipped with a 45 cm telescope and visible (0.4 – 1 μm) and infrared (1.3 – 4.5 μm) spectrometers which can be operated simultaneously. Twinkle is a general observatory which will provide on-demand observations of a wide variety of targets within wavelength ranges that are currently not accessible using other space telescopes or accessible only to oversubscribed observatories in the short-term future. Here we explore the ability of Twinkle’s spectrometers to characterise the currently-known exoplanets. We study the spectral resolution achievable by combining multiple observations for various planetary and stellar types. We also simulate spectral retrievals for some well-known planets (HD 209458 b, GJ 3470 b and 55 Cnc e). From the exoplanets known today, we find that with a single transit or eclipse, Twinkle could probe 89 planets at low spectral resolution (R 20) in channel 1 (1.3 – 4.5 μm). With 10 observations, the atmospheres of 144 planets could be characterised with R 20. By stacking 10 transits, there are 1185 potential targets for study at R < 20 as well as 388 planets at higher resolutions. The majority of targets are found to be large gaseous planets although by stacking multiple observations smaller planets around bright stars (e.g. 55 Cnc e) could be observed with Twinkle. Photometry and low resolution spectroscopy with Twinkle will be useful to refine planetary, stellar and orbital parameters, monitor stellar activity through time and search for transit time and duration variations (TTVs and TDVs). Refinement of these parameters could be used to in the planning of observations with larger space-based observatories such as JWST and ARIEL. For planets orbiting very bright stars, Twinkle observations at higher spectral resolution will enable us to probe the chemical and thermal properties of an atmosphere. Simultaneous coverage across a wide wavelength range will reduce the degeneracies seen with Hubble and provide access to detections of a wide range molecules. There is the potential to revisit them many times over the mission lifetime to detect variations in cloud cover

    Probing the extreme planetary atmosphere of WASP-12b

    Get PDF
    We report near-infrared measurements of the terminator region transmission spectrum and dayside emission spectrum of the exoplanet WASP-12b obtained using the HST WFC3 instrument. The disk-average dayside brightness temperature averages about 2900 K, peaking to 3200 K around 1.46 microns. We modeled a range of atmospheric cases for both the emission and transmission spectrum and confirm the recent finding by Crossfield et al. (2012b) that there is no evidence for C/O >1 in the atmosphere of WASP-12b. Assuming a physically plausible atmosphere, we find evidence that the presence of a number of molecules is consistent with the data, but the justification for inclusion of these opacity sources based on the Bayesian Information Criterion (BIC) is marginal. We also find the near-infrared primary eclipse light curve is consistent with small amounts of prolate distortion. As part of the calibration effort for these data, we conducted a detailed study of instrument systematics using 65 orbits of WFC3-IR grims observations. The instrument systematics are dominated by detector-related affects, which vary significantly depending on the detector readout mode. The 256x256 subarray observations of WASP 12 produced spectral measurements within 15% of the photon-noise limit using a simple calibration approach. Residual systematics are estimated to be less than 70 parts per million.Comment: Accepted for publication in Icaru
    corecore